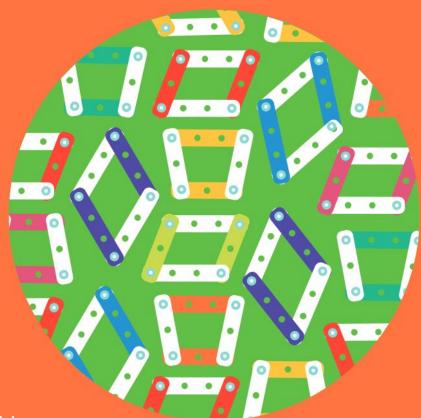


4

Maths

Student Book



4

Maths

Student Book

Tony Cotton

Caroline Clissold Linda Glithro Cherri Moseley Janet Rees

Language consultants: John McMahon Liz McMahon

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries.

©Linda Glithro and Tony Cotton 2021

First edition published 2014.

The moral rights of the author have been asserted.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose this same condition on any acquirer.

British Library Cataloguing in Publication Data

Data available

ISBN 9781382006699

13579108642

Paper used in the production of this book is a natural, recyclable product made from wood grown in sustainable forests. The manufacturing process conforms to the environmental regulations of the country of origin.

Printed in Great Britain by Bell and Bain Ltd. Glasgow.

Acknowledgements

The publisher and authors would like to thank the following for permission to use photographs and other copyright material:

Cover artwork by Peskimo. Photos: p6(t): dominique landau/Shutterstock; p6(bl): Typhoonski/Dreamstime: p6(br): dmitro2009/Shutterstock: p17: nanka/Shutterstock: p19(t): Richmatts/iStockphoto; p19(b): John Warburton-Lee Photography/Alamy Stock Photo; p32(a), p35(a): clickit/Shutterstock; p32(b), p35(b): Berezovskaya/Shutterstock; p32(c), p35(c): Volodymyr Burdiak/Shutterstock; p32(d), p35(d): neelsky/Shutterstock; p32(e), p35(e): David Havel/Shutterstock; p37: Pitinan Piyavatin/Alamy Stock Photo; p38: Chaowalit Seeneha/ Shutterstock; **p52(t)**: Lemberg Vector studio/Shutterstock; **p52(b)**: Eichiku/Shutterstock; **p57**: Guru 3D/Shutterstock; p62(a): Krakenimages.com/Shutterstock; p62(b): Eric Isselee/ Shutterstock; p62(c): Eric Isselee/Shutterstock; p62(d): Ekipaj/Shutterstock; p62(e): Eric Isselee/Shutterstock; **p62(f)**: Jaroslava V/Shutterstock; **p65**: romawka/Shutterstock; **p66**: Stephen Whybrow/Shutterstock; p68(ml): tulla/iStockphoto; p68(tr): Ryan Mackay/ Dreamstime; p68(br): Merydolla/Shutterstock; p68(bl): Rawpixel.com/Shutterstock; p84(mr): Nataliia K/Shutterstock; **p84(br):** Andrey_Popov/Shutterstock; **p100:** Vladimir Wrangel/ Shutterstock; p104(t): DarioZg/Shutterstock; p104(bl): Iakov Filimonov/Shutterstock; p104(br): JUAN HERBERT GIRSANG/Shutterstock; p121: Duncan Cuthbertson/Shutterstock; p128: Ahturner/Shutterstock; p130: Panoramic Images/Alamy Stock Photo; p144: Independent Photo Agency Srl/Alamy Stock Photo; p156(l): G2019/Shutterstock; p156(m): KazT/ Shutterstock; p156(r): Astor57/Shutterstock; p161(l): Vereshchagin Dmitry/Shutterstock; p161(m): XiXinXing/Shutterstock; p161(r): Konstantin L/Shutterstock; p162: © Lefevre Fine Art Ltd., London/Bridgeman Images; p175(tl): Angela Royle/Shutterstock; p175(tm): Vladeep/ Shutterstock; p175(tr): ColorMaker/Shutterstock; p175(bl): Peyker/Shutterstock; p175(bm): Sharon Spiteri/Shutterstock; p175(br): Elena_RK/Shutterstock.

Artwork by John Batten, Q2A Media Services Pvt. Ltd and OKS.

Every effort has been made to contact copyright holders of material reproduced in this book. Any omissions will be rectified in subsequent printings if notice is given to the publisher.

Contents

Hov	w to use this book	5	3D	Multiplication strategies	48		
Hai	t 1 Number and		3E	Written methods for			
				multiplication	50		
•	ce value		3F	Dividing 2-digit numbers			
Enga	•	6		by a single-digit number	53		
1A	Place value and partitioning		3G	Rounding answers up			
1B	Counting on and back	11		or down	57		
1C	Counting in multiples	13	3H	Multiplication and division			
1D	Negative numbers	15		as inverse operations	60		
1E	Roman numerals	17	31	Scaling problems	62		
	nect	19	3 J	Correspondence problems	64		
Revi	ew	20	Con	nect	66		
Uni	t 2 Addition and		Revi	ew	67		
	traction		Uni	t 4 Fractions and			
Enga	age	21	decimals				
2A	Adding three or four		Enga		68		
	small numbers	22	4A	Recognising fractions	69		
2B	Adding or subtracting		4B	Hundredths	72		
	2-digit numbers	24	4C	Equivalent fractions	75		
2C	Mental addition and		4D	Using equivalence to	, ,		
	subtraction	27		order fractions	79		
2D	Written methods of		4E	Finding fractions of	, ,		
	addition	30		quantities	81		
2E	Written methods of		4F	Adding and subtracting	01		
	subtraction	33	••	fractions	85		
Con	nect	36	4G	Equivalent fractions and	03		
Revi	ew	37		decimals	87		
			4H	Dividing by 10 and 100	92		
Uni	t 3 Multiplication and		41	Rounding to the nearest	72		
divi	sion		••	whole number	94		
Enga	age	38	4 J	Comparing decimals	96		
3A	Multiplication tables		4K	Decimals in money and	70		
	and multiples	39		measures	98		
3B	Doubling and halving	43	Con		ا 102		
3C	Multiplying 2-digit numbers	45	Revie		102		
							

Uni	t 5 Length, mass and		8D	Completing symmetrical			
	acity			pictures	153		
Eng		104	8E	Drawing symmetrical			
5A	Estimating, measuring			pictures	155		
	and recording length	105	8F	Line symmetry	157		
5B	Estimating, measuring		8G	Angles	159		
	and recording mass	108	Con	nect	161		
5C	Estimating, measuring		Revi	ew	163		
	and recording capacity	112					
5D	Using and reading scales	114		t 9 Geometry –			
Con	nect	119	•	ition and direction	164		
Revi	ew	120	Engage				
			9A	Directions	165		
Uni	t 6 Area and perimeter		9B	Giving directions to			
Eng	age	121		follow a path	167		
6A	Calculating area and		9C				
	perimeter	122		on a grid	169		
6B	Finding the area of		9D	Translations	171		
	rectilinear shapes	125	9E	Plotting shapes on a			
Con	nect	128		coordinate grid	173		
Revi	ew	129	Connect		175		
			Revi	ew	176		
	t 7 Time		Hei	t 10 Statistics			
Eng		130			177		
7A	Different ways of telling			age	177		
	the time	131	IUA	Collecting, presenting	170		
7B	Timetables and calendars	135	40D	and interpreting data	178		
7C	Measuring time intervals	140	TOR	Comparing scales with	100		
	nect	142	400	different intervals	182		
Revi	ew	143		Time graphs	187		
Hni	t 8 Geometry –		100	Using Venn diagrams	100		
			C	and Carroll diagrams	189		
•	perties of shapes	144		nect	193		
Eng.		144	Revi	ew	194		
8B	2D shapes 3D shapes	143	Glo	ssary	195		
	2D snapes 2D nets of 3D shapes	151	410		1 7 3		

How to use this book

The Student Book for Oxford International Primary Maths forms part of your mathematics lessons for this year. Your teacher will introduce the ideas through whole-class activities, then you will explore them in more depth using this book, before all coming back together to discuss what you have learned. Find out more at: www.oxfordprimary.com/international-maths

Structure of the book

This book is divided into 10 units. Each unit covers a different strand of mathematics.

What you will find in each unit

There are five types of lessons:

Engage introduces the unit's mathematical ideas.

It tells you what you will learn in the unit and includes the big question.

Discover introduces mathematical skills and concepts.

In **Explore** you practise the skills you learned in Discover.

Connect helps you make links between the different areas of mathematics in the unit.

In **Review** you show your teacher what you have learned in the unit.

What you will find in the lessons

Although each lesson is unique, they have common features:

Discover / **Explore** The lesson type tells you whether you are discovering new mathematical concepts or exploring concepts you have already been introduced to.

This box gives the key words for the lesson.

This challenges you to take your learning further.

In the speech bubbles, you will find useful hints, examples of how to complete a question, or extra guestions to get you

thinking about the mathematics you are doing.

Additional features

This shows you where you can practise the key vocabulary, either by writing the words or through a discussion.

This shows you where you can practise your mental maths skills such as your times tables or other key number facts.

This shows you where you need to record your work in a notebook.

Glossary Key words are listed in a picture glossary at the end of the book. You can write your own definition for each word.

Teacher's Guides

The Teacher's Guide that accompanies this book provides lesson notes for each page.

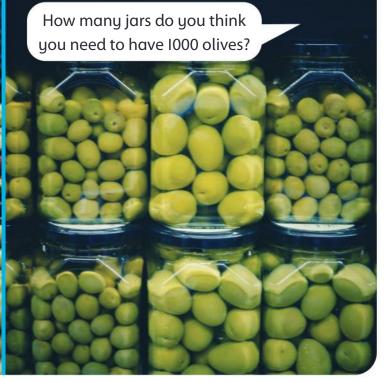
Practice Book

At the bottom of each page in this book, there is a link to the Practice Book, where you can find extra practice to do in your lesson or at home.

1 Number and place value

0

How can I use my knowledge of counting to 100 to order and compare numbers greater than 1000?


In this unit you will:

- count in multiples of 6, 7, 9, 25 and 1000
- count back through zero to include negative numbers
- order and compare numbers beyond 1000
- estimate numbers using number lines
- round any number to the nearest 10, 100 or 1000.

Engage

How much space do you think 1000 olive trees need?

How long do you think it takes to count to 1000?

Discover

Write numbers

Think back

Key words

- 4-digit number
- thousands
- partitioning

The place or position of a digit in a number tells you its size or value.

In words, the number below is one thousand two hundred and seventy-four.

Thousands	Hundreds	Tens	Ones		
I	2	7	4		
Represents	Represents	Represents	Represents		
1000	200	70	4 ones		

When one of the places has no value we use a zero as a placeholder.

For example, in the number 3045, the zero shows that there are no hundreds.

In words, this number is three thousand and forty-five.

- I Write these numbers in numerals. The first one is done for you.
 - a Four thousand six hundred and thirty-four

4634

- **b** One thousand three hundred and twelve
- c Three thousand and sixty-nine
- **d** Eight thousand three hundred and two
- Can you think of a 4-digit number that has two zeros?

- **2** Write these numbers in words. The first one is done for you.
 - a 7169 Seven thousand one hundred and sixty-nine
 - **b** 4372_____
 - **c** 3097 _____
 - **d** 5009_____

Discover (continued)

3 Use these four digits to make:

a the largest number possible

b the largest even number possible

c the smallest number possible

d the smallest even number possible.

Check your answers with a partner.

4 Partition these numbers.

When you know the value of the digits, you can **partition** a number.

I can partition 2135: 2000 + 100 + 30 + 5

5 Partition these numbers.

Stretch zone

Can you explain to a partner how to partition 6007 and 8070?

Explore

Write and round numbers

- I Estimate where each 4-digit number goes on the number line. Mark and label the number on the number line.
- 0
- Write the value of the digit that is <u>underlined</u>.
- **a** 4268

The underlined digit has a value of

b 3279

The underlined digit has a value of

c 6705

The underlined digit has a value of

d 2541

The underlined digit has a value of

e 70<u>4</u>3

The underlined digit has a value of

Key words

- value
- round
- the nearest IO
- the nearest 100

In <u>4</u>268, the underlined digit has a value of 4 thousands.

Can you think of a number that has the same number of tens and thousands?
Can you think of a number that has the same number of ones and hundreds?

Explore (continued)

2 Use these numbers to make three 3-digit numbers.

400 300 70 2 100 8 90 7 800

• Mark and label your numbers on this number line.

378 0 1000

3 Round your numbers to the nearest 10.

is 380 to the nearest 10.
is to the nearest 10.

4 Use these numbers to make three 4-digit numbers.

 2000
 60
 300
 4
 80
 7
 500
 3

 8000
 50
 5
 5000

• Mark and label your numbers on this number line.

5 Round your numbers to the nearest 100.

is 2600 to the nearest 100.

is to the nearest 100.

is to the nearest 100.

to the nearest 100.

to the nearest 100.

I made 300 + 70 + 8 = 378.

Remember: if a number ends in 5, round it up to the next multiple of 10.

I made 2000 + 500 + 60 + 7 = 2567.

If a number ends in 50, round it up to the next multiple of 100.

Stretch zone

Write a number that is 3500 to the nearest 100 and 3450 to the nearest 10.

1B Counting on and back

Discover

Use place value to count on and back

Think back

You can use place value to count on and count back in ones, tens, hundreds and thousands.

For example:
$$5642 + 100 = 5742$$

$$5742 + 1000 = 6742$$

$$6742 - 1 = 6741$$

$$6741 + 10 = 6751$$

Key words

- count on
- count back

Use the answer to each calculation as the start number in the next calculation.

I Complete these steps.

	•
. 1000	
+ I000 =	

- 2 Look at the numbers in the middle column of the table.
 - Count on and back to complete both sides of the table. The first row is done for you.

	-1000	-100	-10	-I	Number	+I	+10	+100	+1000
	123	1123	1223	1233	1234	1235	1245	1345	2345
а					3261				
b					4075				
c					2189				
d					5075				
e	_				5375				

Stretch zone

What changes and what stays the same when you count on in 100s? What changes and what stays the same when you count on in 1000s?

1B Counting on and back

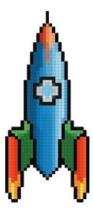
Explore

A number journey

- I Work with a partner.
 - Choose a 3-digit number.
 - Each of you write this number on your whiteboard.
 Then follow this number journey:
 - Add 2000
 - Take away 2
 - Add 200
 - Take away 10.
 - Check your final answer with your partner. Did you both get the same number?
- **2** Write your own number journey using a 4-digit number. Make sure that every digit changes during your journey.
 - Give your 4-digit number and the instructions for the number journey to your partner. Then check their answer.

- The table shows some computer game scores.
 - Work out the difference between each start score and the new score.

Start score	New score	Difference
4560	4660	
2913	3113	
7521	9521	
1309	1349	
3189	4289	


- multiples of 10
- multiples of 100
- multiples of 1000

I chose 123. I made 2123, 2121, 2321, 2311.

Don't show your partner your whiteboard!

Stretch zone

Write three different pairs of numbers with a difference of 200.

1C Counting in multiples

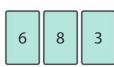
Discover

Number sequences

- I Write the next four numbers in each sequence. The first number in each sequence is I.
 - a The rule is 'add 6'.
 - **b** The rule is 'add 7'.
 - c The rule is 'add 9.
 - d The rule is 'add 25.
 - e The rule is 'add 1000.
- **2** Pick three cards from a set of digit cards I-9.
 - Use the digits to make a 3-digit start number.
 - Write the number in the first box in each sequence.
 - Then write the next four numbers in each sequence.
 - Then write the next four numbers in each sequence.
 - **b** (add 7)
 - c (add 9)
 - **d** (add 25)
 - e (add 1000)

Stretch zone

a (add 6)


Write a sequence of five numbers that starts with I and ends with a number between 40 and 50. You must add the same number each time.

Key words

- multiple
- number sequence

If the rule is 'add 3', the sequence is I, 4, 7, I0, I3.

I picked 3, 6 and 8. I made the number 683.

1C Counting in multiples

Explore

Complete number sequences

- I Write four number sequences.
 - You must count on or back in multiples of 6, 7, 9, 25 or 1000.
 - Use any start number. Write the first five numbers in each sequence.
 - Do not write the rule yet!

	Sequence	Rule
а		The rule is:
b		The rule is:
c		The rule is:
d		The rule is:

- **2** Swap your number sequences with a partner.
 - Write the rule for your partner's sequences. Then write the next two numbers in each sequence.

Key words

- multiple
- number sequence

I chose 154 as my start number. My sequence is 154, 163, 172, 181, 190. Can you guess my rule?

I think your rule is 'add 9'. The next two numbers are 199 and 208.

Stretch zone

Write a sequence that counts on in multiples of 25. Choose a start number between 50 and 75. Continue until you finish with a number between 550 and 575. How many numbers are there in your sequence?

1D Negative numbers

Discover

Thermometer numbers

Look at the thermometer. The temperatures below zero are negative numbers.

- 0
- a Talk to a partner about what you notice.
 - **b** Write three things about the thermometer.

•

•

•

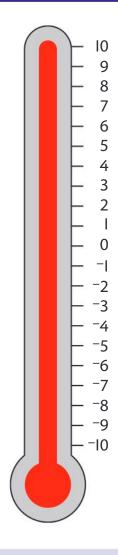
- **2** Count back in ones from 10 to -10. Say the numbers aloud.
- **3** Use the thermometer to help you complete these sequences.
 - **a** (Count back in twos)

8 6 2 -2 -4

b (Count back in threes)

8 5 -1 -7

c (Count back in fours)


10 2 -10

d (Count on in 3s)

-I2 -6 3

Key words

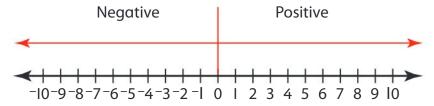
- negative number
- positive number
- thermometer
- temperature

When we see ⁻7, we say **negative seven**.

Stretch zone

Write two counting-back sequences that start with 8 and end with -10.

1D Negative numbers


Explore

The answer is negative

Repeat these steps 10 times and complete the table below.

- Pick two cards from a set of digit cards I–9.
- The smaller number is your start number.
- Subtract the larger number from your start number.

Start number	Subtract	Finish on
4	9	⁻ 5

Key words

- negative number
- positive number

I picked 4 and 9.
My start number
was 4. I subtracted 9.
I finished on -5
(negative 5).

Stretch zone

I count back 7 and finish on a negative number. Find a possible start number. What number did I finish on? How many different start and finish numbers can you find?

Discover

Introducing Roman numerals

Did you know?

 We can use Roman numerals to write numbers. Roman numerals used these symbols:

I, V, X, L, C, D and M.

- Roman numerals are sometimes used at the end of a TV programme or a film to show the date the programme was made.
- We sometimes see Roman numerals on clock faces.

Key word

• Roman numerals

How to read Roman numerals

Rules:

- I If a smaller numeral comes *after* a larger numeral, add the smaller numeral to the larger numeral. For example, XI: X + I is II
- **2** If a smaller numeral comes *before* a larger numeral, subtract the smaller numeral from the larger numeral. For example, IX: X I is 9
- **3** Do not use the same numeral more than three times in a row. For example, VIII is 8 but IX is 9 (not VIIII).

Clues:

- The year 2020 in Roman numerals is MMXX.
- I am 6I years old today. My age in Roman numerals is LXI.
- The Roman Empire lasted for 507 years. This is DVII in Roman numerals.
- The maximum score in a game of darts is 180. This is CLXXX.

Use the rules and clues above to work out the value of these symbols.

								_		
ı	Ι	2	V	3	Χ	4	L	5	С	

Stretch zone

Some numbers have the same number of Roman numerals as digits 0–9. For example, 2020 is MMXX – both use 4 numerals or digits. Find three more numbers that have the same number of Roman numerals as digits 0–9.

1E Roman numerals

Explore

Write Roman numerals

I What numbers do these Roman numerals represent?

 TT
- 11

b IV

f XIX

q	LXIX

h	CI	VIV

i	DCL	_XIX

i	MDCI	XIX

•	\//rita	thoco	numl	horc	in	Doman	numera	٦
4	vvrrte	uiese	num	oers	Ш	Roman	numera	เร.

b The number of students in your class

C	The	number	of stude	ents in	your	schoo
---	-----	--------	----------	---------	------	-------

Key word

Roman numerals

Look back at the rules and clues on page 17 to help you.

To write the Roman numerals for numbers bigger than 1000, you draw a horizontal bar over a numeral. This multiplies the value by 1000. For example, 100 000 is:

 \overline{C}

Stretch zone

Use Roman numerals to write the population of your town or city and the population of your country.

